L’idea di funzione #2

di Antonio Sparzani

funzioni2

Ed eccoci – dopo quanto visto qui  – all’ultimo passo del cammino che porta a una definizione di funzione che finalmente ci soddisferà.

D. Quarto passo. Già nel XVIII, e poi più decisamente nel XIX secolo comincia ad affermarsi la tendenza a generalizzare la definizione di funzione, svincolandola dall’esigenza di una sua rappresentazione analitica, cioè dalla necessità – formale – di rappresentarla con una formula; la prima vera formulazione di questo tipo è dovuta a Eulero 1 e suona così:

«Se alcune quantità dipendono da altre quantità in modo tale che se queste ultime vengono cambiate allora le prime anche cambiano, allora queste sono dette funzioni delle seconde. Questa denominazione è della più ampia natura e comprende ogni metodo per mezzo del quale una quantità può esser determinata da altre. Se perciò x denota una quantità variabile allora tutte le quantità che dipendono dalla x in un qualsiasi modo, o sono da questa determinate, sono dette funzioni di x.

Quest’idea non fu immediatamente condivisa dai matematici europei, ma dopo qualche decennio cominciò ad affermarsi definitivamente, nelle opere di Lagrange, Lacroix, Fourier e – infine – di Lobačevskij e Dirichlet.

Questi schematici accenni dovrebbero suggerire che l’idea che sta alla base del concetto di funzione è quella di dipendenza di una grandezza da un’altra, o da varie altre. Notate però che la parola ‘dipendenza’ può alludere a due situazioni differenti: la prima – connotativa – ad un modo causale formalmente esprimibile nel quale una grandezza y è determinata da un’altra grandezza x , esempio: la direzione di marcia di un’auto dipende strettamente dai movimenti dello sterzo; la seconda – denotativa – e dunque più astratta e casuale – esempio: se associate ad ogni intervallo di un minuto della notte dal 10 all’11 agosto 2014 il numero di stelle cadenti visibile a occhio nudo in un fissato quadrante del cielo boreale, è chiaro che ottenete una funzione perfettamente definita e determinata, ma è molto meno chiaro come si possa in qualche modo risalire dal valore della variabile indipendente (il generico intervallo di un minuto) a quello della funzione (il numero di stelle cadenti apparse in quel minuto), l’unico modo è quello di una accurata osservazione. È chiaro che in questo caso la funzione è data in modo squisitamente estensivo: si osserva – e si trascrive poi eventualmente in un grafico – il valore corrispondente ad ogni minuto; mentre nell’esempio dello sterzo c’è sicuramente modo di calcolare – e quindi anticipare – la direzione di marcia in termini dell’angolo di rotazione dello sterzo.

Allora la funzione c’è quando una cosa dipende da un’altra: al variare di questa varia quella, in un qualche modo che può essere il più vario possibile. Si tratta di metter tutto questo in una forma razionalmente corretta e comprensibile. Per farlo occorre che nella definizione sia contenuta da un lato la presenza di una quantità che può variare (e che sarà detta variabile indipendente) all’interno di un certo ben precisato ambito di possibilità – e che è detto dominio della funzione – e dall’altro la descrizione di un ambito, in generale diverso dal primo – detto codominio, o anche range, della funzione – in cui può variare la quantità (detta variabile dipendente) che dipende dalla prima; oltre a ciò occorre che sia esattamente precisata questa dipendenza. Come s’è detto questa “precisazione” può essere formale – analitica, cioè esprimibile con formule – o invece fornita dall’osservazione dei fatti. Nell’idea di funzione c’è dunque qualcosa di profondamente non simmetrico, c’è una grandezza che varia arbitrariamente all’interno di un certo ambito e ce n’è poi un’altra che varia al variare della prima. Questa non simmetria si evidenzia anche da questa caratteristica di ogni funzione, che viene detta la sua univocità: dato un valore della variabile indipendente, dunque appartenente al suo dominio, uno e un solo valore della variabile dipendente gli corrisponde. Per ogni valore dell’età di Alice è univocamente determinata la sua altezza: ad una determinata età Alice non può avere due altezze diverse. Ma se invece fissate un valore dell’altezza (dunque del codominio della funzione che stiamo considerando) esisteranno certamente molti valori dell’età di Alice cui quel valore corrisponde: Alice non continua a crescere per tutta la sua vita, né a decrescere.

Un modo standard usato dai matematici pignoli per scrivere tutto questo è questo:

funzione notazione

 

Dove D indica il dominio della funzione f , W indica il codominio, x il generico elemento di D e le freccette alludono in qualche modo alla asimmetria della situazione.

Print Friendly, PDF & Email
NOTE
  1. Leonhard Euler (Basilea 1707 – San Pietroburgo 1783), grande matematico e fisico svizzero; fu allievo di Johann Bernoulli, e succedette nel 1733 al figlio di questi, Daniel, sulla cattedra di matematica dell’Accademia di San Pietroburgo. Scrisse la definizione qui riportata nella prefazione delle sue Institutiones calculi differentialis, pubblicate nel 1755.

1 commento

I commenti a questo post sono chiusi

articoli correlati

La follia dei numeri #3, però . . .

di Antonio Sparzani
“L’italiani sono di simulato sospiro”, dice il Gadda nelle sue fantasmagoriche Favole e aggiunge “L’italiani sono dimolto presti a grattar l’amàndola: e d’interminato leuto”. Bene, l’italiani matematici non son da meno: i nomi di Gerolamo Cardano (pavese, 1501-1576) e di Rafael Bombelli (bolognese, 1526-1572) sono tra quelli più implicati nella ulteriore follia che esaminiamo adesso.

Visti dall’Oltre

di Fabrizio Centofanti
In potenza siamo molte cose: un’energia allo stato puro che tende verso una realizzazione. Ma è l’atto che ci definisce. È l’idea di progetto: chi siamo veramente? Conosciamo il nostro destino, ciò per cui siamo al mondo? Ci interessa?

La follia dei numeri #2

di Antonio Sparzani
Dove siamo arrivati con la follia dei numeri: siamo arrivati a costruire una classe di numeri che sembra li contenga tutti, visto che possiamo scrivere un numero qualsiasi di cifre prima della virgola e una successione qualsiasi di cifre dopo la virgola, anche una qualsiasi successione infinita, cosa vogliamo di più folle ancora?

La follia dei numeri #1

di Antonio Sparzani
In tutta la mia vita adulta i numeri e la scienza che li tratta, la matematica, mi sono stati piuttosto familiari, e spesso necessari, data la mia...

M’è venuto un sospetto. . . .

di Antonio Sparzani
Spero abbiate tutte e tutti notato come e in quali efferati e rivoltanti modi la polizia italiana (comprendo in questo termine carabinieri, polizia, urbana e non, e qualsiasi altro cosiddetto tutore dell’ordine) stia, come dire, alzando la cresta, ovvero il livello della brutale repressione dei “diversi” in qualsiasi modo essi si presentino: i fatti di Verona e poco prima i fatti di Milano, quattro agenti che pestano di brutto una transessuale ecc. ecc.

Le parole della scienza 3: da Tito Livio alla terribile “formula”

di Antonio Sparzani
La prima puntata qui e la seconda qui. Che cosa hanno in comune una Ferrari e il censimento della popolazione nell’antica Roma? Non molto, sembrerebbe, salvo che c’è una stessa parola che è implicata in entrambe. Nell’antica Roma, due millenni prima dell’epoca delle Ferrari, Tito Livio, storico di età augustea, scrisse un’opera immensa, cui si conviene di dare il titolo Ab urbe condita – dalla fondazione della città–per–eccellenza
antonio sparzani
antonio sparzani
Antonio Sparzani, vicentino di nascita, nato durante la guerra, dopo un ottimo liceo classico, una laurea in fisica a Pavia e successivo diploma di perfezionamento in fisica teorica, ha insegnato fisica per decenni all’Università di Milano. Negli ultimi anni il suo corso si chiamava Fondamenti della fisica e gli piaceva molto propinarlo agli studenti. Convintosi definitivamente che i saperi dell’uomo non vadano divisi, cerca da anni di riunire alcuni dei numerosi pezzetti nei quali tali saperi sono stati negli ultimi secoli orribilmente divisi. Soprattutto fisica e letteratura. Con questo fine in testa ha scritto Relatività, quante storie – un percorso scientifico-letterario tra relativo e assoluto (Bollati Boringhieri 2003) e ha poi curato, raggiunta l’età della pensione, con Giuliano Boccali, il volume Le virtù dell’inerzia (Bollati Boringhieri 2006). Ha curato due volumi del fisico Wolfgang Pauli, sempre per Bollati Boringhieri e ha poi tradotto e curato un saggio di Paul K. Feyerabend, Contro l’autonomia (Mimesis 2012). Ha quindi curato il voluminoso carteggio tra Wolfgang Pauli e Carl Gustav Jung (Moretti & Vitali 2016). È anche redattore del blog La poesia e lo spirito. Scrive poesie e raccontini quando non ne può fare a meno.
%d blogger hanno fatto clic su Mi Piace per questo: